96 research outputs found

    Transcranial alternating current stimulation for the treatment of major depressive disorder: from basic mechanisms toward clinical applications

    Get PDF
    Non-pharmacological treatment is essential for patients with major depressive disorder (MDD) that is medication resistant or who are unable to take medications. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that manipulates neural oscillations. In recent years, tACS has attracted substantial attention for its potential as an MDD treatment. This review summarizes the latest advances in tACS treatment for MDD and outlines future directions for promoting its clinical application. We first introduce the neurophysiological mechanism of tACS and its novel developments. In particular, two well-validated tACS techniques have high application potential: high-definition tACS targeting local brain oscillations and bifocal tACS modulating interarea functional connectivity. Accordingly, we summarize the underlying mechanisms of tACS modulation for MDD. We sort out the local oscillation abnormalities within the reward network and the interarea oscillatory synchronizations among multiple MDD-related networks in MDD patients, which provide potential modulation targets of tACS interventions. Furthermore, we review the latest clinical studies on tACS treatment for MDD, which were based on different modulation mechanisms and reported alleviations in MDD symptoms. Finally, we discuss the main challenges of current tACS treatments for MDD and outline future directions to improve intervention target selection, tACS implementation, and clinical validations

    Bis[μ-1,2-diphenyl-N,N′-bis­(di-2-pyridyl­methyl­eneamino)ethane-1,2-diimine]disilver(I) bis­(hexa­fluorido­phosphate) acetonitrile disolvate

    Get PDF
    In the centrosymmetric dinuclear title compound, [Ag2(C36H26N8)2](PF6)2·2C2H3N, the Ag+ ion is bound to four N atoms from two 1,2-diphenyl-N,N′-bis­(di-2-pyridyl­methyl­eneamino)ethane-1,2-diimine ligands in a distorted tetra­hedral geometry. The ligand adopts a twist conformation, coordinating two metal centers by three pyridyl N atoms and one imine N atom and spanning two Ag+ ions, resulting in the formation of a helical dimeric structure

    Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model

    Get PDF
    We developed a water-centric monthly scale simulation model (WaSSI-C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI-C model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE) estimates by multiple independent methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial and temporal variability and the effects of large droughts on key ecosystem fluxes. Our modeled mean (±standard deviation in space) ET (556 ± 228 mm yr−1) compared well to Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 ± 251 mm yr−1) and watershed water balance based ET (571 ± 242 mm yr−1). Our mean annual GEP estimates (1362 ± 688 g C m−2 yr−1) compared well (R2 = 0.83) to estimates (1194 ± 649 g C m−2 yr−1) by eddy flux-based EC-MOD model, but both methods led significantly higher (25–30%) values than the standard MODIS product (904 ± 467 g C m−2 yr−1). Among the 18 water resource regions, the southeast ranked the highest in terms of its water yield and carbon sequestration capacity. When all ecosystems were considered, the mean NEE (−353 ± 298 g C m−2 yr−1) predicted by this study was 60% higher than EC-MOD\u27s estimate (−220 ± 225 g C m−2 yr−1) in absolute magnitude, suggesting overall high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a new tool for examining the trade-offs between regional water and carbon resources under a changing environment

    The sequencing and de novo assembly of the Larimichthys crocea genome using PacBio and Hi-C technologies.

    Get PDF
    Larimichthys crocea is an endemic marine fish in East Asia that belongs to Sciaenidae in Perciformes. L. crocea has now been recognized as an "iconic" marine fish species in China because not only is it a popular food fish in China, it is a representative victim of overfishing and still provides high value fish products supported by the modern large-scale mariculture industry. Here, we report a chromosome-level reference genome of L. crocea generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The genome sequences were assembled into 1,591 contigs with a total length of 723.86 Mb and a contig N50 length of 2.83 Mb. After chromosome-level scaffolding, 24 scaffolds were constructed with a total length of 668.67 Mb (92.48% of the total length). Genome annotation identified 23,657 protein-coding genes and 7262 ncRNAs. This highly accurate, chromosome-level reference genome of L. crocea provides an essential genome resource to support the development of genome-scale selective breeding and restocking strategies of L. crocea

    Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations

    Get PDF
    Accurate estimation of the satellite-based global terrestrial latent heat flux (LE) at high spatial and temporal scales remains a major challenge. In this study, we introduce a Bayesian model averaging (BMA) method to improve satellite-based global terrestrial LE estimation by merging five process-based algorithms. These are the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product algorithm, the revised remote-sensing-based Penman-Monteith LE algorithm, the Priestley-Taylor-based LE algorithm, the modified satellite-based Priestley-Taylor LE algorithm, and the semi-empirical Penman LE algorithm. We validated the BMA method using data for 2000–2009 and by comparison with a simple model averaging (SA) method and five process-based algorithms. Validation data were collected for 240 globally distributed eddy covariance tower sites provided by FLUXNET projects. The validation results demonstrate that the five process-based algorithms used have variable uncertainty and the BMA method enhances the daily LE estimates, with smaller root mean square errors (RMSEs) than the SA method and the individual algorithms driven by tower-specific meteorology and Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data provided by the NASA Global Modeling and Assimilation Office (GMAO), respectively. The average RMSE for the BMA method driven by daily tower-specific meteorology decreased by more than 5 W/m2 for crop and grass sites, and by more than 6 W/m2 for forest, shrub, and savanna sites. The average coefficients of determination (R2) increased by approximately 0.05 for most sites. To test the BMA method for regional mapping, we applied it for MODIS data and GMAO-MERRA meteorology to map annual global terrestrial LE averaged over 2001–2004 for spatial resolution of 0.05°. The BMA method provides a basis for generating a long-term global terrestrial LE product for characterizing global energy, hydrological, and carbon cycles

    Poly[hemi(ethyl­enediammonium) [di-μ-oxalato-indium(III)] dihydrate]

    Get PDF
    In title compound, {(C2H10N2)0.5[In(C2O4)2]·2H2O}n, the unique InIII ion is coordinated by eight O atoms from four oxalate ligands in a distorted square-anti­prismatic environment. The doubly bis-chelating oxalate ligands act as bridging ligands connecting symmetry-related InIII ions and forming a three-dimensional open framework structure. Ethyl­enediammonium cations and water mol­ecules occupy the voids within the structure. The unique ethyl­enediammonium cation and one water mol­ecule both lie on a twofold rotation axis. One of the other two water mol­ecules residing on general crystallographic sites was refined as disordered with half occupancy. In the crystal structure, cations and water mol­ecules are linked to the anionic framework via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds

    Resveratrol alleviates lipopolysaccharide-induced liver injury by inducing SIRT1/P62-mediated mitophagy in gibel carp (Carassius gibelio)

    Get PDF
    IntroductionResveratrol (RES) is a polyphenol organic compound with antioxidant and anti-inflammatory properties. This study aimed to determine whether and how RES can alleviate liver injury in lipopolysaccharide (LPS)-induced gibel carp.MethodsGibel carp were fed a diet with or without RES and were cultured for 8 weeks, followed by LPS injection.Results and discussionThe results suggested that RES attenuated the resulting oxidative stress and inflammation by activating the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway, as confirmed by changes in oxidative stress, inflammation-related gene expression, and antioxidant enzyme activity. Furthermore, RES cleared damaged mitochondria and enhanced mitochondrial biogenesis to mitigate reactive oxygen species (ROS) accumulation by upregulating the SIRT1/PGC-1α and PINK1/Parkin pathways and reducing p62 expression. Overall, RES alleviated LPS-induced oxidative stress and inflammation in gibel carp through mitochondria-related mechanisms

    Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal

    No full text
    A comparative study was carried out for the removal of phosphorus in simulated unplanted vertical-flow constructed wetlands with different layered double hydroxide (LDHs) coated anthracite substrates. Three particle sizes of anthracites were selected and modified separately with nine kinds of LDH coating. The simulated substrates test columns loaded with the original and modified anthracites were constructed to treat the contaminated water. For the medium and large particle size modified anthracite substrates, the purification effects of total phosphorus, total dissolved phosphorus and phosphate were improved by various degrees, and the purification effect of the medium particle size anthracite is better than that of the large size one. The medium size anthracite modified by ZnCo-LDHs had optimal performance with average removal efficiencies of total phosphorus, total dissolved phosphorus and phosphate reaching 95%, 95% and 98%, respectively. The maximum adsorption capacity on ZnCo-LDHs and ZnAl-LDHs modified medium sizes anthracites were 65.79 (mg/kg) and 48.78 (mg/kg), respectively. In comparison, the small size anthracite is not suitable for LDHs modification
    • …
    corecore